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ABSTRACT: In its most general form, the Hill cipher’s keyspace consists
of all matrices of a given dimension that are invertible over Zm. Working
from known results over finite fields, we assemble and prove a formula for
the number of such matrices. We also compare this result with the total
number of matrices and the number of involutory matrices for a given
dimension and modulus, identifying the effects of change in dimension
and modulus on the order of the keyspace.
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1 Introduction

Although the Hill cipher’s susceptibility to cryptanalysis has rendered it
unusable in practice, it still serves an important pedagogical role in both
cryptology and linear algebra. It is this role in linear algebra that raises several
interesting questions.

In the general case, the keyspace of the Hill cipher is precisely GL(d, Zm)—
the group of d × d matrices that are invertible over Zm for a predetermined
modulus m. We first present a formula for the order of this group (with
proof). We then consider involutory matrices, which eliminate the necessity
of computing matrix inverses for Hill decryptions. Finally, we compare the
total number of matrices with the number of invertible and involutory matrices,
identifying the effects of change in dimension and modulus on the order of the
keyspace.
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1.1 The Hill Cipher

For the sake of completeness, we provide the following description of the Hill
cipher. Though it varies slightly from Hill’s original description given in [2]
and [3], it is fundamentally equivalent and is consistent with modern texts in
cryptography (such as [10]). A plaintext string over an alphabet of order m is
rewritten as a vector over Zm using a natural correspondence. In either column-
major or row-major order, the vector is rewritten as a matrix P with d rows,
where d is an arbitrarily chosen positive integer. (To fill the matrix, it may be
necessary to pad the string with extra characters to make its length a multiple
of d.) A matrix K ∈ GL(d, Zm) is chosen to be the key matrix. The encryption
is performed by computing

C = eK(P ) = KP

and rewriting the resulting matrix as a string over the same alphabet.
Decryption is performed similarly by computing

P = dK(C) = K−1C.

1.2 Prerequisites

Before beginning our look into the order of GL(d, Zm), we establish some
prerequisite properties of matrices that are componentwise congruent.

Definition Let A, B ∈ Mr×s(Z), d ∈ Z
+. We use the notation A

M

≡ B (mod
m) to denote that, for all i and j, aij ≡ bij (mod m).

Lemma 1.2.1
M

≡ is an equivalence relation.

Lemma 1.2.2 Let A, B, C, and D be matrices in Mr×s(Z), X and Y be
matrices in Ms×t(Z), α and β be integers, and m be a positive integer.

a) If A
M

≡ B (mod m) and C
M

≡ D (mod m), then A ± C
M

≡ B ± D (mod m).

b) If A
M

≡ B (mod m) and α ≡ β (mod m), then αA
M

≡ βB (mod m).

c) If A
M

≡ B (mod m) and X
M

≡ Y (mod m), then AX
M

≡ BY (mod m).

d) If A and B are square matrices such that A
M

≡ B (mod m), then det A ≡
det B (mod m).

Proof Parts a and b follow directly from properties of congruence. To prove

part c, assume that A
M

≡ B (mod m) and X
M

≡ Y (mod m). Then, for all
i, j, and k, aik ≡ bik (mod m) and xkj ≡ ykj (mod m). Let Z = AX and

Ẑ = BY . Now zij =
∑s

k=1 aikxkj mod m, and ẑij =
∑s

k=1 bikykj mod m. But
since aik ≡ bik (mod m) and xkj ≡ ykj (mod m) for all i, j, and k, it follows
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that zij mod m = ẑij mod m and, thus, zij ≡ ẑij (mod m) for all i and j. Thus,

Z
M

≡ Ẑ (mod m), and thus
M

≡ is preserved under matrix multiplication.

To prove part d, we assume that A
M

≡ B (mod m), noting then that
aij mod m = bij mod m for all i and j. We will use the standard definition

det A =
∑

σ∈Sd

sign(σ)a1σ1
a2σ2

. . . asσs
.

Now det A mod m =
(
∑

σ∈Sd
sign(σ) · a1σ1

· a2σ2
· . . . · asσs

)

mod m

=
(
∑

σ∈Sd
(sign(σ) · a1σ1

· a2σ2
· . . . · asσs

) mod m
)

mod m

=
(
∑

σ∈Sd
(sign(σ) · (a1σ1

mod m) · . . . · (asσs
mod m)) mod m

)

mod m

=
(
∑

σ∈Sd
(sign(σ) · (b1σ1

mod m) · . . . · (bsσs
mod m)) mod m

)

mod m

=
(
∑

σ∈Sd
(sign(σ) · b1σ1

· b2σ2
· . . . · bsσs

) mod m
)

mod m

=
(
∑

σ∈Sd
sign(σ) · b1σ1

· b2σ2
· . . . · bsσs

)

mod m
= det B mod m. Therefore, det A ≡ det B mod m.

2 The Order of GL(d, Zm)

We now present the formulae necessary for computing the order of the Hill
cipher’s keyspace. We begin with the case of a prime modulus, then extend
that formula to consider prime-power and general moduli.

2.1 |GL(d, Zp)|, where p is prime

When p is prime, calculating the order of GL(d, Zp) is fairly straightforward
since Zp is a field. The following result is fairly well-known.

Theorem 2.1.1 The number of d × d invertible matrices over Zp for a prime
p is

|GL(d, Zp)| =

d−1
∏

i=0

(pd − pi).

Proof The standard proof of this formula [9, Thm 8.13] describes how d column
vectors over Zp can be chosen such that they will form an invertible matrix. The
only restriction on the first vector is that it be nonzero, as this would destroy
the linear independence of the columns. Thus, there are pd − 1 possible “first
columns.” Now suppose that we have i linearly independent columns. The
(i + 1)-st column can be chosen in pd − pi ways, avoiding linear combinations
of the previous i columns. By induction, the number of invertible matrices is
∏d−1

i=0 (pd − pi).

2.2 |GL(d, Zpn)|, for a prime p and a natural number n

We now consider the case where the modulus is a power n of a prime p. We will
require the following lemmas.
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Lemma 2.2.1 Suppose m = pn, where n ∈ Z
+ and p is prime. Let A ∈

Md×d(Zm), where d ∈ Z
+. Dividing the entries of A by p, we may form a d× d

matrix C of quotients and a d×d matrix B of remainders such that A = B+pC.
Then A is invertible mod pn if and only if B is invertible mod p.

Proof Let A, B, and C be as indicated. Note that B has entries in {0, . . . , p−1}
and C has entries in {0, . . . , pn−1 − 1}.

Because B is the matrix of quotients upon dividing the entries of A by p,

it follows that A
M

≡ B (mod p) (Definition 1.2). By Lemma 1.2.2d, we know
that det A ≡ det B (mod p). Thus, gcd(det A, p) = gcd(det B, p). Now A is
invertible mod pn iff gcd(det A, pn) = 1 iff gcd(det A, p) = 1 iff gcd(det B, p) =
1 iff B is invertible mod p.

Theorem 2.2.2 The number of d× d invertible matrices over Zpn for a prime
p and natural number n is

|GL(d, Zpn)| = p(n−1)d2

d−1
∏

i=0

(pd − pi).

Proof We can use Lemma 2.2.1 to rewrite any matrix A ∈ Zpn as B + pC,
where B has entries in Zp and C has entries in Zpn−1, noting that A is invertible
mod pn iff B is invertible mod p. By Theorem 2.1.1, we know that there are
∏d−1

i=0 (pd − pi) possible matrices B. There are p(n−1)d2

possibilities for C since
it need not be invertible. Then the number of possibilities for A and, therefore,
the total number of invertible matrices mod pn is p(n−1)d2∏d−1

i=0 (pd − pi).

2.3 |GL(d, Zm)|, for any integer m ≥ 2

We now consider the case of a composite modulus m. In Lemma 2.3.1 and
Theorem 2.3.3, we will rewrite m as a product of powers of distinct prime
numbers, i.e. m = pn1

1 pn2

2 . . . pnz
z . In Lemma 2.3.1, a matrix A over Zm

is mapped to a z-tuple of matrices where each component is A modulo a
single factor in this decomposition of m. We prove that such a mapping is
an isomorphism.

Lemma 2.3.1 Define φ : Md×d(Zm) −→
⊕z

i=1 Md×d(Zp
ni
i

) by φ(A) =
⊕

φi(A), where φi(A) = A mod pni

i , with φi being the i-th component of the
image tuple. Then φ is a ring isomorphism.

Proof Let A and B be matrices in Md×d(Zm).
Clearly φ is well-defined. Bijectivity of φ follows directly from the Chinese

Remainder Theorem. We prove that φ is operation preserving.
Let C = AB. Let φ(A) = (A(1), A(2), . . . , A(z)) and φ(B) = (B(1), . . . , B(z)).

Note that A(i)B(i) = (AB)(i) for all i since matrix multiplication preserves
modular equivalence. Now
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φ(A)φ(B) = (A(1), A(2), . . . , A(z))(B(1), B(2), . . . , B(z))
= (A(1)B(1), A(2)B(2), . . . , A(z)B(z))

= ((AB)(1), (AB)(2), . . . , (AB)(z))
= φ(AB).

Therefore, φ is an isomorphism.

Lemma 2.3.2 Let φ be as defined in Lemma 2.3.1. Then a matrix A over Zm

is invertible iff φ(A) is invertible.

Proof If A is invertible mod m, then φ(A)φ(A−1) = φ(AA−1) = φ(I), which
is the identity in the codomain since φ is a ring isomorphism. Thus φ(A) is
invertible. The converse follows because φ is an isomorphism.

Theorem 2.3.3 The number of d × d matrices invertible mod m =
∏

i pni

i is

|GL(d, Zm)| =
∏

i

(

p
(ni−1)d2

i

d−1
∏

k=0

(pd
i − pk

i )

)

.

Proof Let φ be as in Lemma 2.3.1. For a tuple in the codomain of φ to be
invertible, each of its matrix components must be invertible. The number of
invertible matrices mod pni

i , for each i, is given by Theorem 2.2.2. The number
of invertible tuples, then, is the product of the number of possibilities for each
component. From Lemma 2.3.2, we know that a matrix A over Zm is invertible
iff its tuple representation φ(A) is invertible. Since φ is bijective, the number of
matrices invertible mod m is as above.

3 Involutory Matrices

Using Theorem 2.3.3, one can determine that, of the 3 × 3 matrices over a
26-letter alphabet, 1,634,038,189,056 can serve as key matrices. For most of
these matrices, however, the decryptor is left with the nuisance of computing
a matrix inverse. Hill [3] recognized this problem and proposed the use of
involutory matrices in order to make the cipher symmetric. Since a matrix A is
involutory if and only if A2 = I , or, equivalently, A = A−1, the Hill decryption
function

dK(C) = K−1C

can be rewritten as
dK(C) = KC,

which coincides with the encryption function

eK(P ) = KP.

In Hill’s time, this meant that the same machinery could be used both for
encryption and decryption of messages; no additional hardware would be needed
to compute inverses before decrypting.
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Figure 1: Numbers of 3 × 3 Invertible Matrices
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The question arises: if the keyspace is restricted to matrices that are
involutory, how does this affect its order? The answer can be determined using
results of Reiner, Hodges, Levine, and Korfhage, which we will soon state. In
the next section, we will observe exactly how restrictive the involutory keyspace
is. (Since our primary focus is on the order of the keyspace, we will not present
methods of construction of involutory matrices. The interested reader is referred
to [7] or [6].) As in the case of invertible matrices, we begin with the cases
of prime and prime-power moduli and then consider a general modulus. The
following theorems are restated nearly verbatim, with changes made only for
the purpose of clarification. Proofs have been omitted; the interested reader
may refer to the references.

3.1 Involutory matrices over Zpn, for a prime p and a
natural number n

When the modulus is an odd prime p or a power of that prime, we may use the
following result of Reiner. In order to conform to the literature, we adopt the
convention of using gt to stand for the formula for GL(t, Zp) given in Theorem
2.1.1.
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Theorem 3.1.1 [8, p. 774] For a d × d integer matrix X, the number of
solutions of X2 = I (mod pa+1) for an odd prime p is given by

d
∑

t=0

(

gd

gtgd−t
· p2t(d−t)a

)

,

where gt is given by

gt = pt2
t
∏

i=1

(1 − p−i) =
t−1
∏

i=0

(pt − pi). (3.1.2)

for 0 < t ≤ d and g0 = 1.

When the modulus is, instead, a power of 2, we must use the following
result. The case n = 1 was derived by Hodges [4, p. 520]; the remainder is the
work of Levine and Korfhage [6, p. 644]. The two results have been combined
for simplification. The formula for T (d, 22) below corrects a minor typesetting
error in [6, p. 644].

Theorem 3.1.3 The number T (d, 2n) of d × d involutory matrices mod 2n is
given by the following, where gt is given by (3.1.2). When n = 1, we have

T (d, 21) = gd

bd/2c
∑

t=0

2−t(2d−3t)

gtgd−2t
.

If n = 2, then

T (d, 22) = gd

bd/2c
∑

h=0

2d2−4hd+5h2

ghgd−2h
.

If n ≥ 3, then

T (d, 2n) = 2d2

gd

d
∑

h=0

22h(d−h)(n−3)

min(h,d−h)
∑

r=0

2r(3r−2d)

grgh−rgd−h−r
.

3.2 Involutory matrices over Zm, for composite m

As with invertible matrices, we are able to determine the number of involutory
matrices modulo a composite number m by decomposing m into its prime power
factorization and computing the number of involutory matrices modulo each
prime power.

Theorem 3.2.1 [6, p. 652] Let m = pn1

1 pn2

2 . . . pnk

k be the prime power
factorization of m. Then

T (d, m) =

k
∏

i=0

T (d, p
nj

j ),

where T (d, m) denotes the number of d × d involutory matrices over Zm.
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Figure 2: Numbers of 3 × 3 Involutory Matrices
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4 A Comparison

We now have the necessary formulae to compute the total number of matrices,
the number of invertible matrices, and the number of involutory matrices over
Zm for any modulus m. This allows us to answer several fundamental questions.
For example, of the 3 × 3 matrices over Z26, what percentage are invertible?
Involutory? Does increasing the dimension or modulus necessarily guarantee
that the keyspace is increasing?

Figures 1 and 2 show the number of 3×3 invertible and involutory matrices,
respectively, for moduli up to 100. (Graphs of these functions for matrices of
higher dimension are similar in appearance.) A quick comparison of these figures
provides two insights. First, the number of invertible matrices is significantly
larger than the number of involutory matrices, no matter what the modulus.
Second, an increase in the modulus does not always correspond with an increase
in the number of matrices. In terms of the Hill cipher, this indicates that
increasing the size of the alphabet will not necessarily increase the size of the
keyspace; it may even shrink it. (On the other hand, increasing the dimension
of the matrix does increase the number of invertible matrices.)

Given these graphs, one may hypothesize that if a random matrix of given
dimension and modulus is chosen, then there is a fair probability that it is
invertible but a much lower probability that it is involutory. This is generally
true. Figure 3 shows the percentage of all 3 × 3 matrices that are invertible
and involutory for moduli up to 100. Clearly, the values for involutory matrices
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Figure 3: Percentage of 3× 3 Matrices That Are Invertible, Involutory
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approach zero quite rapidly. The values for invertible matrices, however, seem
rather scattered. Despite this, there is one particularly noticeable trend: The
values for prime moduli are much higher than those for nearby composite
moduli. In fact, they appear to be approaching 100% as the modulus increases.
There are several other patterns, however, that are not immediately obvious.
For example, the values for moduli m = 6, 12, 18, 24, 36, 48, 54, 72, and 96 are
the same. It can be shown that this is because they all have the same set of
prime factors, {2, 3}. The values at 42 = 2 · 3 · 7 and 84 = 22 · 3 · 7 are also the
same. We will now pursue these notions more rigorously.

Definition Let m ≥ 2 and d be positive integers. Define

f(d, m) =
|GL(d, Zm)|

|Md×d(Zm)|
. (4.2)

In other words, f(d, m) denotes the proportion of d × d matrices over Zm that
are invertible.

Above, we observed that the percentage of matrices that were invertible was
the same for moduli with the same primes in their factorization, regardless of
how many times each prime occurred. We will now prove this result. Before
doing so, we establish a simple result that allows us to more easily evaluate
f(d, m) when m is prime.
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Lemma 4.3 Let d denote a positive integer and p a prime. Then

f(d, p) =
d
∏

j=1

(

1 −
1

pj

)

.

Proof Since p is prime, we can use Theorem 2.1.1 to rewrite

f(d, p) =

∏d−1
i=0 (pd − pi)

pd2
. =

d−1
∏

i=0

(

pd − pi

pd

)

=

d
∏

j=1

(

1 −
1

pj

)

.

Theorem 4.4 Let d denote a positive integer and m a positive integer ≥ 2 with
prime factorization m =

∏

i pni

i . Then

f(d, m) =
∏

i

d
∏

j=1

(

1 −
1

pj
i

)

.

Proof We begin by substituting the result of Theorem 2.3.3 into (4.2):

f(d, m) =

∏

i

(

p
(ni−1)d2

i

∏d−1
k=0(p

d
i − pk

i )
)

md2
.

Rewriting m in its prime factorization and commuting the factors in the
denominator, we have

f(d, m) =

∏

i

(

p
(ni−1)d2

i

∏d−1
k=0(p

d
i − pk

i )
)

∏

i pnid2

i

=

∏

i

(

pnid
2

i p−d2

i

∏d−1
k=0(p

d
i − pk

i )
)

∏

i pnid2

i

=

∏

i pnid
2

i p−d2

i

∏d−1
k=0(p

d
i − pk

i )
∏

i pnid2

i

=
∏

i

pnid
2

i p−d2

i

∏d−1
k=0(p

d
i − pk

i )

pnid2

i

=
∏

i

(

∏d−1
k=0(p

d
i − pk

i )

pd2

i

)

.

Finally, by Lemma 4.3, we have

f(d, m) =
∏

i

d
∏

j=1

(

1 −
1

pj
i

)

.

In addition to providing a simpler evaluation of f , this proves the following
corollary.
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Corollary 4.5 f(d, m) does not depend on the exponents in the prime factor-
ization of m.

Example To illustrate, we consider various moduli that factor into powers of
2 and 3.
f(3, 6) = f(3, 2 · 3) ≈ 0.1872
f(3, 72) = f(3, 23 · 32) ≈ 0.1872
f(3, 96) = f(3, 25 · 3) ≈ 0.1872
f(3, 62208) = f(3, 28 · 35) ≈ 0.1872

We now prove the “particularly noticeable trend” in Figure 3, i.e., that
the percentage of matrices that are invertible mod p approaches 100% as p
approaches infinity. In terms of f , this is stated as follows.

Theorem 4.6 Let d denote a positive integer and p a prime. Then

lim
p→∞

f(d, p) = 1.

Proof By Lemma 4.3, we know that we are considering

lim
p→∞

f(d, p) = lim
p→∞

d
∏

j=1

(

1 −
1

pj

)

.

Since limp→∞ (1 − 1/pj) = 1 for all j, and there are finitely many j’s, it follows
that

lim
p→∞

f(d, p) =
d
∏

j=1

1 = 1.

Another interpretation of this theorem is as follows: the probability that a
randomly-chosen d × d matrix is invertible mod p is about 1 for any “large”
prime p.

While the above theorem showed that we can make f arbitrarily close to 1,
it is also possible to make f arbitrarily close to zero: simply increase the number
of distinct primes in its factorization. The following theorem presents this more
formally.

Theorem 4.7 Let d denote a positive integer and m a positive integer with k
distinct prime factors m = p1p2 . . . pk. Then

lim
k→∞

f(d, m) = 0.

Before presenting the proof of this theorem, we review two results from
number theory.

Definition [5, p. 1694] The Riemann zeta function, ζ(s), is defined as

ζ(s) =

∞
∑

k=1

1

ks
. (4.8)
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Theorem 4.9 (Euler) [5, p. 1694] An alternative representation of ζ(s) is given
by

ζ(s) =
∏

p−prime

1

1 − 1
ps

.

We are now ready to prove Theorem 4.7.

Proof By Theorem 4.4, we have

lim
k→∞

f(d, m) = lim
k→∞

k
∏

i=1

d
∏

j=1

(

1 −
1

pj
i

)

= lim
k→∞

d
∏

j=1

k
∏

i=1

(

1 −
1

pj
i

)

Now limk→∞

∏k
i=1

(

1 − 1/pj
i

)

= 1/ζ(j) by Euler’s product (Theorem 4.9). This

allows us to simplify

lim
k→∞

f(d, m) = lim
k→∞

d
∏

j=1

k
∏

i=1

(

1 −
1

pj
i

)

=

(

lim
k→∞

k
∏

i=1

(

1 −
1

pi

)

)

d
∏

j=2

1

ζ(j)
.

From (4.8), we can quickly determine that ζ(1) = ∞ and so

lim
k→∞

k
∏

i=1

(

1 −
1

pi

)

= 0.

All other ζ(s) > 0 for s ≥ 2. Therefore, the product is zero, and the theorem is
proved.

As above, this theorem can be restated in terms of probability: the
probability that a randomly-chosen d × d matrix is invertible mod m is almost
zero provided m has sufficiently many different prime divisors.

5 Conclusion

We have given formulae for the numbers of d × d invertible and involutory
matrices mod m. We note that, while involutory matrices may save decryption
time, requiring that key matrices be involutory significantly reduces the size of
the keyspace. We have also observed that, while increasing the dimension of key
matrices leads to a larger keyspace, increasing the modulus (i.e., the size of the
alphabet) may not. When the keyspace is GL(d, Zm), prime moduli generally
produce larger keyspaces than composite moduli. Thus, the largest keyspaces
result from a large matrix dimension and an alphabet of prime order.
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