ПРИМЕНЕНИЕ ВЕРОЯТНОСТНОЙ НЕЙРОННОЙ СЕТИ ДЛЯ ЛОКАЛИЗАЦИИ И ИСПРАВЛЕНИЯ ОШИБОК В МОДУЛЯРНЫХ НЕЙРОКОМПЬЮТЕРАХ

Н. И. Червяков, Д. В. Сивоплясов

Ростовский военный институт ракетных войск (филиал, г. Ставрополь)

Рассмотрен принцип обнаружения и коррекции ошибок данных, представленных в системе остаточных классов, на основе использования модулярных нейронных сетей и вероятной нейронной сети.

The principle of errors detection and correction, represented in residue number system, based on the use of modular neural networks and probabilistic neural network is shown.

1. Постановка задачи

Актуальность проведения исследований и разработок в области модулярных нейросетевых технологий подтверждается необходимостью создания отказоустойчивых вычислительных систем. Отказоустойчивое функционирование вычислительных систем не исключает появления неисправностей, а опирается на эффективные методы устранения их влияния, т.е. система должна безошибочно работать при отказах отдельных ее компонентов или при ошибках в программном обеспечении. При этом утраченная информация должна быть восстановлена.

Для локализации и исправления ошибок в модулярных нейрокомпьютерах в работе [1] предложено использовать нейронную сеть Хопфилда, функционирующую в качестве автоассоциативного запоминающего устройства. К недостаткам нейронной сети Хопфилда следует отнести наличие обратных связей и малое число сохраняемых образов, максимальное число которых определяется выражением [2, 3, 4]

$$P_{max} = \frac{N}{2 \ln N} ,$$

где P_{\max} – число образов, которые могут быть сохранены;

N – число нейронов сети.

Для повышения качества локализации и исправления ошибок данных, представленных в модулярном коде, в данной работе предлагается использовать вероятностную нейронную сеть (PNN – Probabilistic Neural Network).

2. Отображение модулярных вычислений на структуру вероятностной нейронной сети

Число A в системе остаточных классов представляется в виде набора наименьших неотрицательных вычетов $(\alpha_1, \alpha_2, ..., \alpha_n)$, вычисленных по модулю каждого из оснований непозиционной системы счисления p_i , и определяется выражением [5]

$$\alpha_i \equiv A(mod \ p_i) . (1)$$

Диапазон представления чисел равен

$$P_n = p_1 \cdot p_2 \cdot \dots \cdot p_n$$

или

$$P_n = \prod_{i=1}^n p_i .$$

Будем считать, что для однозначного представления числа A достаточно k остатков, причем k < n. За рабочие основания примем модули $p_1,\ p_2,\ \dots,\ p_k$. Диапазон однозначного представления по этим основаниям равен

$$P_k = \prod_{i=1}^k p_i . (2)$$

Диапазон P_n называется полным, диапазон P_k – рабочим [5].

Используя формулы (1) и (2), запишем область разрешенных значений представления числа A в виде матрицы

$$P_{k} = \begin{vmatrix} \alpha_{1}^{0} & \alpha_{2}^{0} & \dots & \alpha_{k}^{0} & \dots & \alpha_{n}^{0} \\ \alpha_{1}^{l} & \alpha_{2}^{l} & \dots & \alpha_{k}^{l} & \dots & \alpha_{n}^{l} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{1}^{i} & \alpha_{2}^{i} & \dots & \alpha_{k}^{i} & \dots & \alpha_{n}^{i} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{1}^{k} & \alpha_{2}^{k} & \dots & \alpha_{k}^{k} & \dots & \alpha_{n}^{k} \end{vmatrix},$$
(3)

где $i \in [0, P_k)$.

Количество столбцов матрицы (3) определяется количеством модулей p_i , количество строк – рабочим диапазоном P_k .

Матрица (3) является обучающей выборкой для вероятностной нейронной сети.

3. Синтез структуры вероятностной нейронной сети для локализации и исправления ошибок данных, представленных в модулярном коде

Нейронная сеть PNN описана в работе [2] и предназначена для решения вероятностных задач, в частности, задач классификации [2, 4]. Структура вероятностной нейронной сети для локализации и исправления ошибок данных, представленных в модулярном коде, показана на рисунке 1.

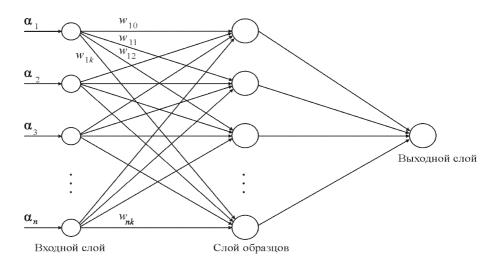


Рисунок 1 – Архитектура вероятностной нейронной сети

Нейроны входного слоя выполняют распределительные функции. Количество нейронов входного слоя при двоичном представлении данных определяется выражением

$$X = [log_2 p_1] + [log_2 p_2] + ... + [log_2 p_n]$$

или

$$X = \sum_{i=1}^{n} [log_2 p_i]$$
 . (4)

Нейроны слоя образцов представляют собой радиальные базисные элементы, активность которых определяется функцией Гаусса с нормальным законом распределения [2, 6]

$$y_i = exp\left(-\frac{\sum_{i=1}^{n}(w_{ij} - x_i)^2}{2\sigma^2}\right), (5)$$

где w_{ij} – весовые коэффициенты, равные элементам соответствующего вектора-образца;

 x_{i} — элементы неизвестного входного вектора;

 σ^2 – дисперсия, характеризующая ширину радиально-базисной функции.

Количество радиальных элементов определяется векторами обучающего множества (3), причем каждый вектор входа ставится в соответствии одному из классов. Входной слой и промежуточный слой образуют полносвязную структуру. Весовая матрица между слоями формируется с использованием векторов входа из обучающего множества (3), учитывая выражение (4).

Слой суммирования [2], используемый для сложения выходных значений элементов слоя образцов, опускается, т.к. одному классу соответствует один образец.

Весовые значения связей, идущих от элементов слоя образцов к выходному элементу, фиксируются равными единице. Конкурирующая функция активации выходного слоя формирует на выходе значение, равное единице, для элемента слоя образцов с максимальным значением активности и нуль — в остальных случаях. Таким образом, сеть PNN выполняет классификацию векторов входа по классам.

Для вероятностной нейронной сети не требуется обучения в том смысле, какое требуется для сетей с обратным распространением ошибок, так как все параметры сети определяются непосредственно учебными данными.

1. Нейронная сеть обнаружения и коррекции ошибок данных, представленных в коде системы остаточных классов

Архитектура нейронной сети обнаружения и коррекции ошибок данных, представленных в модулярном коде (рисунок 2), представляет собой многослойную сеть, состоящую из нейронной сети конечного кольца (НСКК) обнаружения ошибок [1] и нейронной сети PNN для локализации и исправления ошибок.

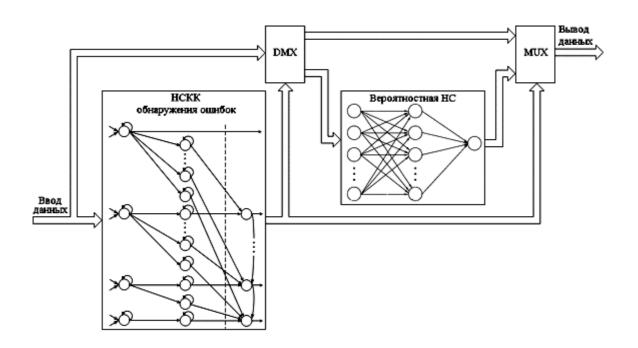


Рисунок 2 – Архитектура нейронной сети для обнаружения, локализации и исправления ошибок данных, представленных в модулярном коде

Нейронная сеть конечного кольца обнаруживает ошибку данных, представленных в СОК с основаниями $p_1,\ p_2,\ ...,\ p_n$ по значению коэффициента a_n [1, 6]

$$a_n = \begin{cases} 0, & \hat{i} \phi \, \hat{e} \, \hat{a} \, \hat{e} \hat{e} \, \hat{e} \, \hat{a} \, \hat{o} \, \hat{o}; \\ 1, & \hat{i} \, \phi \, \hat{e} \, \hat{a} \, \hat{e} \, \hat{e} \, \hat{a} \, \hat{a} \, \hat{n} \, \hat{o} \, \hat{u}. \end{cases}$$

Сигнал a_n подается на управляющие входы демультиплексора и мультиплексора. Если $a_n = 0$, то неискаженные данные через демультиплексор и мультиплексор поступают на выход блока коррекции данных [1].

Если $a_n = 1$, т.е. данные имеют ошибочные разряды, происходит активация управляющих входов мультиплексора и демультиплексора, и данные с ошибкой через демультиплексор поступают на вход нейронной сети PNN в двоичном коде. Сеть PNN восстанавливает искаженные данные.

Пример. Пусть $p_i = \{2, 3, 5, 7\}$. Выберем модули $p_1 = 2$ и $p_2 = 3$ рабочими, а $p_3 = 5$, $p_4 = 7$ — контрольными. Тогда полный диапазон будет равен $P_n = 210$, а рабочий $P_k = 6$. Области разрешенных и запрещенных значений в двоичном коде с использованием формул (3) и (4) представлены на рисунке 3.

Рисунок 3 — Области разрешенных и запрещенных значений данных, представленных в модулярном коде по основаниям $p_i = \{2, 3, 5, 7\}$

С помощью формул (3) и (4) сформируем весовую матрицу первого слоя сети PNN с использованием векторов входа из обучающегося множества.

W =	0	0	0	0	0	0	0	0	0
	1	0	1	0	0	1	0	0	1
	0	1	0	0	1	0	0	1	0

1	0	0	0	1	1	0	1	1
0	0	1	1	0	0	1	0	0
1	1	0	0	0	0	1	0	1

Если на вход сети подать неискаженный входной вектор $X = (1, 0, 3, 3) = [1\ 0\ 0\ 1\ 1\ 0\ 1\ 1]$, нейроны радиального слоя в соответствии с выражением (5) вычисляют близость нового вектора к векторам обучающего множества. Для нормального закона распределения случайной величины $\sigma^2 = 1$ [8].

$$\begin{aligned} y_0 &= exp \left(-\frac{(1-0)^2 + (0-0)^2 + (0-0)^2 + (0-0)^2 + (1-0)^2}{2} + \right. \\ &+ \frac{(1-0)^2 + (0-0)^2 + (1-0)^2 + (1-0)^2}{2} \right) = exp \left(-\frac{5}{2} \right) = 0.082 \ ; \\ y_1 &= exp \left(-\frac{3}{2} \right) = 0.223 \ ; \ y_2 = exp \left(-\frac{4}{2} \right) = 0.135 \ ; \ y_3 = exp \left(-\frac{0}{2} \right) = 1 \ ; \\ y_4 &= exp \left(-\frac{8}{2} \right) = 0.018 \ ; \ y_5 = exp \left(-\frac{5}{2} \right) = 0.082 \ . \end{aligned}$$

Конкурирующая функция активации выходного слоя формирует на выходе значение, равное 1, для самого большого по величине элемента вектора y_3 и 0 – в остальных случаях.

Если на вход сети подать искаженный входной вектор $X' = (1, 0, 3, 3) = [1\ 0\ 0\ 0\ 1\ 0\ 1\ 1]$, нейроны радиального слоя в соответствии с выражением (5) вычисляют близость нового вектора к векторам обучающего множества:

$$y_0 = 0.135$$
; $y_1 = 0.367$; $y_2 = 0.082$; $y_3 = 0.606$; $y_4 = 0.030$; $y_5 = 0.135$.

Конкурирующая функция активации выходного слоя формирует на выходе значение, равное 1, для самого большого по величине элемента вектора y_3 и 0 — в остальных случаях. В результате произошло исправление ошибочного значения X' = (1, 0, 1, 3) на X = (1, 0, 3, 3).

Для оценки способности нейронной сети PNN к локализации и исправлению ошибок, необходимо выполнить классификацию набора ошибочных векторов, не принадлежащих диапазону разрешенных значений.

Количество возможных однократных ошибок определяется из выражения

$$\hat{E}_{i\phi}^{1} = \sum_{i=1}^{n} P_k \cdot (p_i - 1),$$
 где $i = 1, 2, ..., n$. (6)

Количество возможных двукратных ошибок определяется из выражения

$$\hat{E}_{i\phi}^{2} = P_{k} \cdot [(p_{1} - 1) \cdot ((p_{2} - 1) + (p_{3} - 1) + \dots + (p_{n} - 1)) + \dots + (p_{2} - 1) \cdot ((p_{3} - 1) + \dots + (p_{n} - 1)) + \dots + (p_{n-1} - 1) \cdot (p_{n} - 1)] . (7)$$

Возможные варианты ошибок данных, представленных в системе остаточных классов с основаниями $p_1=2$, $p_2=3$, $p_3=5$, $p_4=7$ в двоичной системе счисления, представлены в таблице 1.

Таблица 1 — Возможные варианты ошибок данных, представленных в модулярном коде по основаниям $p_i = \{2, 3, 5, 7\}$

A	Разрешен	ные значе	ния по осн	ованию p_i	Варианты ошибок для оснований p_i				
A	2	3	5	7	2	3	5	7	
0	0	00	000	000	1	01	001	001	
						10	010	010	
							011	011	
							100	100	
								101	
1	1	01	001	001	0	00	000	000	
						10	010	010	
							011	011	
							100	100	
							_	101	
:	:	:	:	:	:	:	:	:	
5	1	10	000	101	0	00	001	000	
						01	010	001	
							011	010	
							100	011	
								100	

Для решения поставленной задачи в среде MATLAB проведено аналитическое моделирование вероятностной нейронной сети. В качестве обучающего множества использовалась область разрешенных значений (рисунок 3).

Результаты моделирования сведены в таблицу 2 и представлены в виде графика (рисунок 4), который показывает вероятность принятия нейронной сетью PNN правильного решения P в зависимости от кратности ошибок К.

Итак, локализация и исправление ошибок могут быть выполнены в параллельно-конвейерном режиме за 3 цикла синхронизации: 1 цикл — для вычисления близости нового вектора к векторам обучающего множества; 2 цикл — для представления вектора, наиболее близкого к вектору входа числом, близким к 1; 3 цикл — для формирования конкурирующей функцией активации второго слоя на выходе значения, равного 1, для самого большого по величине элемента вектора и 0 — в остальных случаях.

Таблица 2 — Оценка способности вероятностной нейронной сети к локализации и исправлению ошибок данных, представленных в модулярном коде по основаниям $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$

	возможных ібок		ісправленных ібок	Вероятность исправления ошибок		
однократных двукратных		однократных	двукратных	однократных		
78 336		69	104	0,89	0,31	

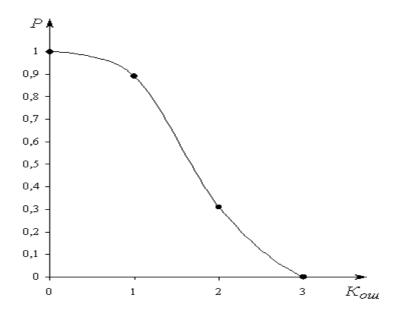


Рисунок 4 — Зависимость вероятности принятия нейронной сетью PNN правильного решения от кратности ошибок

5. Выводы

Разработанная многослойная нейронная сеть может быть реализована в виде аппаратных средств на ПЛИС Xilinx и применена в отказоустойчивых модулярных нейрокомпьютерах для обнаружения, локализации и исправления ошибок в случаях, когда при снижении точности вычисления требуется сохранить скорость выполнения операций.

Литература

- 1. Червяков Н.И., Сахнюк П.А., Шапошников А.В. Применение нейронных сетей Хопфилда для коррекции ошибок в модулярных нейрокомпьютерах // Нейрокомпьютеры: разработка, применение. 2002. № 11. С. 10 16.
- 2. Калан Р. Основные концепции нейронных сетей. М.: Вильямс, 2001. 287 с.
- 3. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М.: Горячая линия Телеком, 2002. 382 с.
- 4. Медведев В.С., Потемкин В.Г. Нейронные сети. Matlab 6 / Под общ. ред. к.т.н. В.Г. Потемкина. М.: Диалог-Мифи, 2002. 489 с.
- 5. Акушский И.Я., Юдицкий Д.И. Машинная арифметика в остаточных классах. М.: Советское радио, 1968. 440 с.
- 6. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. М.: Финансы и статистика, 2002. 344 с.
- 7. Модулярные параллельные вычислительные структуры нейропроцессорных систем // Червяков Н.И., Сахнюк П.А., Шапошников А.В., Ряднов С.А. М.: Физматлит, 2002. 288 с.
- 8. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. М.: ЮНИТИ-ДАНА, 2001. 543 с.